Growth Hacker’s Marketing

growth_hackingMarketing is being disrupted and no more run by only traditional non-technical marketeers. Marketing is supported by a wide range of – call it reporting, dashboarding, marketing analytics, marketing automation processes. Moreover, the startup scene is very exciting and a hot bed for innovation. Most startups spring into action sans a huge funding. The startups will have to grow exponentially, boasting a substantial customer base to be able to entice investors. Enter the growth hacker – with a single minded goal, growth!

Typically, the UX team designs the UX strategy, the product team develops the product, the coder codes in order to deliver the product and the marketeer tries selling the product. But with the new age disruptive marketing, the UX team, product team, code development team and the marketing team will have to work very closely, trying and testing every trick in the book to elevate growth. A growth hacker is a bit of all the above.

A growth hacker is more of a full stack employee armed with Swiss knife like multiple skill sets, analytical abilities being top rated. Growth hacking is primarily a focus within the startups, the budget being a constraint, lesser number of employees expected to contribute more. But with time, enterprise companies will adapt to growth hacking means of increasing revenue generation. Growth hacking is based on data, analyzing data to improve the business processes, to sell more, to convert more, to gain new customers and retain existing customers. Growth hacking does not entail data reporting only for the purpose of data visualization, it uses data to derive at hypotheses and reasoning to better understand and improve internet marketing.

So what’s growth hacking all about? Growth hacking is about

  • Improving user experince by A/B testing to reduce bounce rate
  • Content Marketing
  • Designing, implementing and analyzing sales funnel to reduce drop rates
  • Search Engine Optimization
  • Channelizing all it takes to increase conversion rate
  • Using analytics to track click stream data about consumer’s online behavior
  • Analyzing past online or shopping behavior to be able to predict consumer’s probable behavior at the next visit
  • Social Media marketing – paramount for startups on shoe string budgets. Using Facebook, Twitter APIs to analyze the demographics of consumers sharing and liking the products, consumer opinion in social media and competitor analysis
  • Being able to analyze consumers that are likely to churn and the reasons behind, which can be addressed. Analyzing the response data from campaigns targeted at reducing churn, to measure campaign effectiveness.
  • Improving omnichannel advertising and using analytics to analyze data to conclude the channel that yields most and finding potential market opportunities

From the above list, growth, data and analytics are evidently the point of convergence for growth hacking. Growth hackers have to be inherently curious, tenacious, analytical and above all innovative. Growth hacking is an an art, not just number crunching or coding. It is the ability to see beyond code, to be able to analyze the implications of new features or every change in any part of the business processes that drive growth.

As Sean Ellis says, a “growth hacker’s true compass is north.

Advertisement

Programmatic Conversion

Programmatic marketing involves data driven insights to convert prospects into customers. There is more than meets the eye in the case of conversion rate optimization. Some of the deciding factors for conversion are UX design, the landing page, the source of web traffic, content, competitive price of products, good will, social media marketing, effective campaigns and customer engagement. Programmatic marketing entails analsying data at every customer touch point and targeting the consumer with compelling, preferably  personalised, offers. Conversion is not necessarily making a customer shell out money, it could be interpreted as winning customer loyalty by means of signing up for newsletter, downloading whitepapers or trial versions of the product or spending considerable time on the site. This loyalty, in the long run, could result in big wins through persuasion in the form of emails, SMSs, direct contact and targeted recommendations.

Channelizing data about prospects – online behaviour, previous shopping, socio-economic segmentation, online-search, products saved in the online basket, in other words getting to know the customer better to be able to suggest meaningful differences in people’s lives through the products on offer, results in higher conversion rates. It is here that digital convergence is of paramount importance. Digital convergence blends online and offline consumer tracking data over multiple channels to come up with targeted campaigns. Offline tracking through beacon technology is catching up. It is a win-win solution for both the retailer and the consumer providing each with useful information, the consumer, with an enabled smartphone app within a certain distance from the beacon, recieves useful and targeted information about products and campaigns and the retailer gathers data about consumer shopping habbit.

The online experience can be enhanced to reduce the bounce rate by incorporating some of the following design thoughts:

  1. Associative content targeting: The web content is modified based on information gathered about the visitor’s search criteria, demographic information, source of traffic, the more you know about the prospect, the better you can target.
  2. Predictive targeting: Using predictive analytics and machine learning, recommendations are pushed to consumers based on their previous purchase history, segment they belong to and search criteria.
  3. Consumer directed targeting: The consumer is presented with sales, promotions, reviews and ratings prior to purchase.

Programmatic offers the ability to constantly compare and optimize ROI and profitability across mulitple marketing channels. Data about consumer behaviour, both offline and online, cookie data, segmentation data are algorithmically analyzed, to re-evaluate the impact of all media strategies on the performance of consumer segments. Analyzing consumer insights, testing in iterations, using A/B testing contributes to a higher conversion rate. Using data driven methods to gain a higher conversion rate is programmatic conversion and it’s here to stay.